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ABSTRACT 

During the Apollo 8 lunar flight, 3300 kilograms of 

liquid oxygen were released from the S-IVB 45,000 kilometers 

from the earth during a normal mission operation. The oxygen 

froze immediately forming a large (500 krn) cloud of small 

particles. The cloud was photographed by the Smithsonian 

Astrophysical Observatory% satellite Cracking station in 

Spain over a 90 minute period. 

We have reduced this photometric data using a simple 

collisionless model for the expansion and have deduced the 

following parameters, The particles which are responsible for 

the scattering have a bulk velocity of 1.4 x lo4 cm/sec and a 

thermal velocity of - 3  x lo4 em/sec. While we are unable at this 

time to estimate the radius of the scatterers with any 

confidence, we did establish a lower bound of one micron. 
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TECHNICAL MEMORANDUM 

1.0 INTRODUCTION 

During the Apollo lunar missions, the upper stage of 

the Saturn launch vehicle, the S-IVB, propels the Apollo space- 

craft out of earth orbit and on to a'lunar trajectory. The 

spent S-IVB then separates from the spacecraft, turns perpen- 

dicular to the flight path, and is placed on a trajectory which 

carries it around the trailing limb of the moon and into solar 

orbit. The thrust for this final maneuver is provided by 

thousands of kilograms of unburned liquid oxygen which are 

blown out through the S-IVBts engine. Figure 1 is one in a 

series of 150 photographs of such a release taken by the 

Smithsonian Astrophysical Observatory's satellite tracking 

station in San Fernando, Spain on December 21, 1969 during 

the Apollo 8 mission [Lundquist 1969, Vaughan 19691. During 

the period of photography San Fernando was in darkness and the 

cloud was illuminated by the sun. Light scattered from the 

solid oxygen particles produced the large fan shaped object 

marked (1). Object (2) is the S-IVB and the 'wings1 around it 

are small clouds of hydrogen which is also venting, Object (3) 

is the spacecraft on its way to the moon [Grobman 19691. The 

cloud is about 45,000 kilometers from the earth. 



These photographs provide an opportunity to study 

materials released in space. This is important for two reasons. 

First, quantifying the dominant physical processes will permit 

us to build a better model of the environment of future orbiting 

observatories [Newkirk 1967, Kovar 1969, Grobman 1969, 

Buffalano 19691; and second, photoreduction can provide estimates 

of the optical properties of materials which may be found in inter- 

stellar and interplanetary grains [Plumrner 1969, Wickramasinghe 

1967, Krishna Swamy 1968, 19691. 

2.0 PHYSICAL MODEL 

When the S-IVB vents, 3300 kilograms of liquid oxygen 

escape in 150 seconds [Vaughan 19691 and,freeze immediately. 

Since the bulk velocity is approximately lo4 cm/sec, we will begin 

by assuming that at time zero all the mass is contained inside a 

cone of half angle ec and length Rc (?. 15 kilometers). Next, we 

will show that this volume is so large that the system will be 

collisionless and optically thin at visual wavelengths. 

The mean free-path for collisions between particles of 

radius 'a' and density p (?. 1 gm/cm3) in an ensemble of total 

mass Mt contained in the cone is roughly 

3 
mfp ?. nap Rc (1 -cosOc) 

The system will be collisionless when the mean free-path is larger 

than the dimension of the system. This is when 
1 

Rc > [a (1 -case ) 1-2 kilometers 
C (2) 

where 'a' is in microns. We will subsequently suggest that initially 



the scattering particles are larger than lp and Oc is about 30' 

so the system will be collisionless if 

Rc > 3 kilometers ( 3  

Since Rc is 15 kilometers the system is collisionless and 

optically thin. 

The largest force acting on these particles is consid- 

ered to be radiation pressure [Newkirk 19671. Since the cloud is 

illuminated approximately at right angles to the line of sight 

any cloud drift due to radiation pressure would appear as a 

movement across the field of view. No such drifting is seen in 

the photographs so the particles will be assumed to be essentially 

free from forces. 1.n addition, this allows us to obtain a lower 

bound on the particle size. The drift displacement is given by 

where Fo is the solar constant, c is the velocity of light, and 

the cross section for momentum transfer has been taken to be the 

geometric cross section, The photographs show that the drift 

did not exceed 40 kilometers after 90 minutes, so the particles 

are probably larger than one micron in radius. 

In the absence of collisions and forces the time 

evolution of the particle distribution function is given by 

the Liouville equation 

a f  + ~ , v f  = o 

The solution is well known and states simply that f is 

constant along particle trajectories 

f (5, u, t) = f (x-ut, u, 0 )  - - 



A prescription of the initial condition f(x,u,o) - - is all that 

is required for a complete description of the system. We 

suggest that the release may be treated as though all the 

mass were initially contained inside a cone-shaped region of 

length Rc (Q  15 kilometers) and half angle ec with a Maxwellian 

velocity distribution function characterized by a single 

thermal velocity Vt and streaming velocity Vo. The streaming 

velocity represents the non-random velocity produced in the 

nozzle and is radial at every point in the cone. 

Since particles of many sizes are probably present 

in the cloud the use of only one streaming velocity contains 

an important implicit assumption. Either there is little 

correlation between particle size and streaming velocity or 

the size distribution of particles is relatively narrow in 

the size range producing the scattering. The data reduction 

tends to support the assumption but does not differentiate 

between these possibilities. 

Combining all these assumptions, the particle dis- 

tribution function can be written 

- 2  2 2 
f(x,u,t) = 3M exp - - t - Vt I ur-Vo} + u a + u B 2, 

5 / 2  3 3 
2 n (l-c0s0~) Rc Vt 

if x-ut is inside the cone - - 
= o, if x-u% is outside the cone - - 
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Here (urr ua, u ) are the particle velocity components in a B 
cylindrical coordinate system whose pole is in the radial di- 

rection at every point inside the cone as shown in Figure 2. 

The mass density p(r,O) is obtained at a field point P = ( r  sine, 

0, r cose) by integrating f over the velocity space* The 

integration is most readily performed in the Cartesian space 

(ux,uy,uZ,). Equation 7 shows that f is non-zero only over 

the part of Urc u - space shown in Figure 3. Integration gives 

- 2  2 
P (g, 6 = Mt H exp - vt (2  -Vo) 
t t 

27' 
OC where H = 1 da sinal d~ exp 

O a 2 (sine cosBsina + cosacose -1) 

- 
1-cos e c 

and terms of order Rc have been dropped. The parameter Rc 

q t  q E  
is between -1 and . 4  for the data considered and calculations 

including these terms show that Equation (8) adequately represents 

the qualitative and quantitative of this model. 

The brightness of an optically thin cloud may be 

estimated as [Van deNulst 19571 



- 
where Q is the solid angle subtended by the solar disc, a is 

0 

the total scattering cross section per unit mass, and M is the 

mass column density. The measure of brightness, B/B,, compares 

the radiance, B, of an extended source to the radiance of the 

sun, Bo . Radiance, B ,  is defined as the amount of energy 

crossing a unit area of detector in a unit time and coming from 

a unit solid angle of source. The mass column density is given 

by 

M = I d %  p (r) 

and the scattering cross section per unit mass is given by 

where g(a) is the size distribution function, R is the distance 

from the observer to a scatterer (the integration is performed 

along the line of sight), a is the particle differential 

scattering cross section, and I$ is the angle between the line 

joining the scatterer and the sun and the line joining the 

scatterer and the observer. The integration indicated in (10) 

gives for the relative brightness 2 
B 
0 



3.0 DATA REDUCTION 

The Smithsonian Astrophysical Observatory (SAO) operates 

a world-wide network of Baker-Nunn satellite tracking cameras. 

These are modified Super-Schmidt F/1 telescopes consisting of 

a 31 inch spherical mirror and three corrector elements. The 

aperture and focal length are both 500 millimeters. 

After film has been removed from the camera, a sensi- 

tometer exposes a small portion of the film to a light source 

through a density wedge producing twenty one levels of expo- 

sure. The film is then developed at the station and the 

negatives are sent to the SAO headquarters in Cambridge, 

Massachusetts. There, the area exposed through the density 

wedge is passed through a microdensitometer which measures 

the density of exposed grains for each exposure level. The 

negatives are then run through the densitometer and grain 

density is measured as a function of location on the film 

[Solomon 19671. 

A satisfactory absolute calibration of the film has 

not been made. Analysis of the SAO film is based therefore 

on the relative brightness B/B where Bmax is the maximum 
max 

cloud brightness in a frame. The relative brightness is 

given by : 

l3 max 0.15(3 - 
10 max jskyl _l 



where j is the wedge step number corresponding to the measured 

grain density at an arbitrary point in the cloud, ]sky ds the 

wedge step number of the dark sky background, and jmax is the 

wedge step number at the point of maximum brightness in the 

cloud. 

Of the 150 frames taken, eight were chosen for reduc- 

tion. They are approximately six minutes apart in time and the 

first was taken twenty minutes after the oxygen was released. 

Earlier frames were taken during twilight and were not used and 

later frames did not produce usable images. 

The relative cloud brightness was calculated at about 

29 points in each frame using (13). 

4.0 RESULTS AND CONCLUSIONS 
- 

Since the particles are continuously subliming, uMt 

changes in time. However, because of our assumption that either 

the size distribution function is peaked for efficient scatterers 

or there is no size-velocity correlation, oMt does not vary from 

point to point in the cloud. This permits us to separate the sub- 

limation effects and study the dynamics alone. Equation (12) shows 

that if the cloud brightness in any frame is normalized using the 

maximum brightness in t.hat frame, Bmax, and if B l B  is plotted 
max 

versus (x/~, z/~), a time independent shape 'should result. Figures 

4 and 5 show that this is the case. Figure 4 is a trace down the 

center line of the cloud and Figure 5 is a transverse scan of the 

cloud through the point of maximum brightness. In these figures, 

data points from the eight frames are shown superimposed. 



By choosing various values of 6 cf Vt, and Vo and 

using them in (12) one can fit the data as shown by the solid 

line in Figures 4 and 5. This fit was obtained by straight- 

forward trial and error and was chosen because it gave what 

we consider to be a satisfactory overall reduction of the 
4 

data. The values obtained by this method, Vo = 1.4 x 10 
4 

cm/sec and Vt = - 3  x lo cm/sec, seem reasonable since the 
4 

thermal speed of oxygen in the S-IVB tanks is about 3 x 10 

cm/sec, and Bc = 30° also seems reasonable since it is larger 

than the engine's opening angle and less than 90°. Of course 

we do not expect to obtain a detailed fit to the data because 

we have had to guess at the form of the initial condition and 

because we neglected terms in Rc/Vtt. The addition of more 

parameters describing the spatial variation of the initial 

distribution function and its deviation from thermal equi- 

librium would be required to improve the fit. 

The fit is poorest in Figure 5 at the lateral edges 

of the cloud far from the cane center line and outside the 

region defined by the cone half angle. This is reasonable 

since the particles which arrive in this region come from the 

low probability regions of the initial distribution function 

and are therefore most sensitive to variations in the initial 

condition, Furthermore the initial distribution function is 

really only approximately zero outside the cone. The particles 

neglected by the approximation are j u s t  the ones most likely to 

end up in these regions of poor fit, 



The good o v e r a l l  f i t  shown i n  Figures 4 and 5 encour- 

ages us  t o  be l ieve  t h a t  t h e  a c t u a l  physics of t h e  expansion 

has been properly modeled and t h a t  t h e  dev ia t ions  can be a t -  

t r i b u t e d  t o  an imprecise s ta tement  of t h e  i n i t i a l  condi t ion.  

We hope t o  corroborate  these  conclusions and ob ta in  p a r t i c l e  

s i z e  es t imates  when b e t t e r  photometry i s  done on f u t u r e    pol lo 

f l i g h t s .  
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FIGURE 1. BAKER-NUNN PHOTOGRAPH OF THE APOLLO 8 LIQUID 
OXYGEN RELEASE. OBJECT (1) IS THE OXYGEN CLOUD, 
OBJECT (2) IS THE S-IVB, AND OBJECT (3) IS THE 
COMMAND AND SERVICE MODULE. 



FIGURE 2. THlS SCHEMATIC SHOWS THE COORDINATE SYSTEM USED 
IN  THlS ANALYSIS. 

INSIDE THlS CONE f 

I IS NON-ZERO 

FIGURE 3. THIS SCHEMATIC SHOWS THE INTEGRATION REGION FOR 
EQUATION (8). 





FIGURE 5. RELATIVE BRIGHTNESS ALONG A TRANSVERSE SCAN THROUGH 
THE POINT OF MAXIMUM BRIGHTNESS. 




